Friction

normal and tangent impulse accounting for collision and friction constraints, respectively
\begin{array} {lcl} \dot{C} & = & (\dot{\mathbf{p}_A}-\dot{\mathbf{p}_B})^T\mathbf{t} \\ & = & \begin{bmatrix}t_x\\ t_y\\ (\mathbf{p}_A-\mathbf{c}_A)\times\mathbf{t}\\ -t_x\\ -t_y\\ -(\mathbf{p}_B-\mathbf{c}_B)\times\mathbf{t}\end{bmatrix}^T \begin{bmatrix}v_{A,x}\\v_{A,y}\\\omega_A\\v_{B,x}\\v_{B,y}\\\omega_B\end{bmatrix} = \mathbf{J}_t\mathbf{v}\end{array}

Examples

mass:
x0:
y0:
theta0:
vx0:
vy0:
vAng0:
friction:
tStop:

t=0s

domino spacing:
vAng0:
friction:
tStop:

t=0s

friction:
tStop:

t=0s